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HEAT FLOW THROUGH FIBER-REINFORCED 

COMPOSITE LAYER 

V. T. Gotovchan and V. I. Kushch UDC 536.248 

The problem of heat flow through a layer with a finite number of rows of periodically positioned fibers 
all oriented along the same direction is solved. 

I, Let a layer of thickness h contain s infinite rows of cylindrical fibers, whose longitudinal axes are paralM to 
one another and to the fiat boundary of the layer. The radius of a fiber in the p-th row equals Rp and we shall denote 

the distance between two neighboring fibers in a row by a. Let us introduce a Cartesian system of coordinates so that the 

z axis coincides with the longitudinal axis of one of the fibers in the first row, while the y axis is perpendicular to the 

boundaries of the layer. The coordinates of the center of the k-th fiber in the p-th row in the system Oxy are 

( ~%,.o+/~a, - - ~ ) ,  where k-- 0, + 1  ~-2, p =  1, s; ( _ x  0p, _go)  are the coordinates of the center of a 

fiber in the p-th row closest to the origin of coordinates. We shall also introduce the notation z~ : .r ~ -- it~ ~ hp 

, j~_ g0_~, p 1, s; hi is the distance from the center of the fiber in the first row to the upper boundary of the layer; 

hs+ I is the distance from the center of the fiber in the s-th row to the lower boundary (Fig. 1). 

Let us examine the following boundary value heat-conduction problem: 

ax ~ + -~  t = O; 

(1) 
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T (Rp, q~ph) = tpa (R;,  qov~); 

)~o OT I --=--)~ Otph i ; p =  l , - - - - s ; - - m < k < o o .  

(1) 

In relations (1), (Opk, ~Opk) are the coordinates of a point in the polar coordinate system, fixed to the k-th fiber of the p-th 

row; in addition t = T(x, y) in the region h ~ - - h ~ y ~ l q  and 9 ; h ~ R v ,  t = tv~(pp~, (p~h) in the region Ppk ~< Rp. 

The coordinates Xpk, Ypk' Ppk are measured in units of R .  In addition, it is assumed that X~o ~ xv, g~0 ~ g ,  �9 

The first group of  boundary conditions corresponds to fixing the heat flux Q = X0q/R ~ at y = h - h and heat 

transfer to the surrounding medium (whose temperature is T o) occurs according to the Newton-Rikhman  law with heat- 

transfer coefficient c~ = X0~/R 1 through the surface y = h 1. The second group of  conditions corresponds to an ideal thermal 

contact between the layer and the fibers and, in addition X 0 is the coefficient of  thermal conductivity of the layer material, 

Xp, p = 1, s is the coefficient of  thermal conductivity of the material of the fibers in the p-th row. 

2. For constant q and To, the temperature field T(x, y) is a periodic function of  x with period a. For this reason, 

we shall represent it in the form 

T = A + By + 2Re(T), 

2 2 2 T~ = . "~ A}~hl~,~ (z -}- z~) 47 B>exp[ - - i~v ( z - - i h~ ) l  47 Cpexp[ i , v ( z  q- i ( h - -  h,))], 
h ~ l  n = l  p = l  p= l  

(2) 

where z = x + iy; ~0p = (27r/a) p, while the system of solutions ~n of Laplace's equation has the form 

IW 1 I =~0 ~='~ exp (i%~o~), Im (o~) > 0; 

~ ( ~  (~ = I  2 ~ = e x p ( _ _ i , m c o )  ' I ra(0))<0;  
I ( m~0 

..... = _2a em~- i  (-- i) ~ 1 
a (n - - l ) !  ; ~o= -~-;  e=- -  l ( m ~ l ) .  

(3) 

We introduce the following notation: 

5---;o ,* = z., . . . .  -- .,~ . . . . . .  k = . , o .  

Satisfaction of  the conditions on the fiat layer boundaries leads to the following relations: 

p ~ l  

$ 

!Z-b~f '  e• ( i ~ p  ~ )] exp [ - -  *m (h - -  hl)] = Cm - -  B~ exp (--  %n/z); 
D = I  

(4) 

s 0] -(P) exp (@mZp) (%~ - -  f3) exp (--  ~mh~) = B,~ (%, q- 13) q- Cm ([3 - -  g%) exp (--  g~mh). U/71 

p =  1 

The temperature distribution in all fibers of the p-th row is the same, so that l~,~ (Oph, qovh) = tp (9~h, %,h) = t; (pv, %,) 

and it is sufficient that the joining conditions be satisfied for the fiber with k = 0. We shall represent the temperature in 
this fiber by the series 

r)(~) B(~) (5) 
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Fig. 1. Diagram showing the distribution of 
fibers in a layer (z = 0 cross section). 

The solution for the layer in polar coordinates (pp, ~0p) has the form 

o p,i p, oxp, i % > 2 i  t--Im(z~ + 

@2 Re{~_IAf)exp(--/ngP)9~ q- 2 ( 1 ~ ) ?  Vf) q- 2 cz2P)(q))o~exp (inq~)} , 
n : O  q=l  

(6) 

where 

(z(P) (q) = 2 ,atA(q)~(P)(q)t.~nt ," 
t = l  

~C)(~)_  ( _  1) ~ (n + t -  1)! # o o 
n! (t - -  1)! ~,+t (zp - zq); p ~ q; 

cz(P)(P) ~ - . ,,t = [ ( -  1 ) ~ + ( _ 1 ) t l  ( n + t - - 1 ) !  I I 
n! (t - -  1)! a '~+t k '~+t ' 

h = i  

13(f) -- (-- i)~ 2 ~;~exp(--%~hl) B,,,~exp (iq~mz~ 

= - -  t%.zA �9 nl @, exp l-- %, (h --  th)] Cm exp (-- " 0 

From the joining conditions for the temperature fields in the layer and a fiber in the p-th row, we arrive at the 
equalities: 

s 

D(f ) = A -k B (-- Im z~) -? 2 Re ([3(f , -k ?~P' + Z (z~P)(q') ; 
q = l  

xkp q= 1 

i B g ~ R p - - n - - - d ~  ~ + n  ) + ~ R ,  - -~=~xp; n =  1, oo; p =  l, s. 
q~  

(7) 

Relations (4) and (7) together form a closed infinite system of linear algebraic equations. 

and D(P n) are eliminated from the system, then we obtain a system with the unknowns A(P)" 
n "  

- } -  ' " ;,0 ) ~ o -  + ! R~ + 

where 

+ G ( G 

If the unknowns Bn, Cn, 

- -  .~(q) rcz(P)(q) ~ F~(P)(V) 
1 ~  i . ,  T v,,t + yS;~)(q)l} = O; n = 1, ~ ;  p 
�9 q ~ l  t = ~ l  

~(p)(q) s i ~ 
':~ = ,/--~__, nr @' (%" -- [5) exp (-- 2%d0 exp [i$m (z ~ z~ ~,~; 

Am 

(8)  
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Fig. 2. Temperature distribution at the lower surface of the layer (T', x are 

dimensionless quantities): 1) ~0 ~ -- 0.351r; 2) 0.45~r; 3) 0.5m 

Fig. 3. Temperature distribution over the thickness of  a layer containing two 
rows of fibers (T' ,  y '  are dimensionless quantities): 1) x = 0; 2) 0.4a; 3) 0.5a. 

(p~ ql 2 ( -  i)" ,, e x p ( - -  2%~h) 
. ( zp - ~,~)1 ~m; '~t,~ = I l t  ~ , n  ( l p r a - -  [~) Am e x p  [ i q :~  - a  - 0  

i n =  1 

oo .,~ (-- 2q~mhl) 
'l,,t = -~ ,-TY- %' ( ~ -  [~) exp A~ 

t ; t=[ t~. 

,,t - -  ~ n !  A,~ e x p l - - 2 % , ( h - - h , ) l  X 
tZ; - } 

x ( g -  4)1 
A,~ = ~ + ~ + (B - -  %~) exp ( - -  21~mh ). 

As is evident from the above presentation, the infinite system of  algebraic equations (8) after replacing the unknowns 

= -r- 1 transforms into a normal-type system with the conditions that the surfaces of the fibers and the 
x0 R~ - 

fiat boundaries of the layer do not  touch. This property makes it possible to solve the system approximately by the method 

of reduction [ 1 ]. 

3. As an example, we shall examine the problem of heat flow through a layer with thickness h = h a + h 2 + h 3, 

containing two rows of fibers with radii R and R 2 (Fig. 1). The calculations were performed with the following values of 

the thermophysical parameters: >-1 =-: ,I~ = 10~0, [3 = 10. We examined two variants of the geometric parameters of the 

problem: 1) a = 3R~, a -- 2.4R1, R 2 -  RI, hi -- h~ = 1.2R~, h~, = 2.4R1, q)0 = 0,35~, 0.45~, 0.5~; 2) ~(R~ + R~) = 0.63ah, 

q:o =: 0,3a;  a) R~ = R,, ht := h3 = 1.1Rb lh -=  1,9Rt; b)  /?2 = 2R~, h 1 = 1.1R,, h3 = 2 .1Ri ,  h~ = 2.7R1; c) R~ - -  O.5R~, tq == 1,05RI, 
h~ = 1.35R~, h3 --- 0.55R~. In order to determine the temperatures in the layer and the fibers, we used expressions (2) and 

(5), in which the highest value of the index was equal to 10. This corresponded to retaining in the system (8) 20 complex 

equations, which ensured high accuracy of the solution of  the problem (the error in satisfying the joining conditions (1) is 
fractions of a percent). 

The results of the calculations are shown in Figs. 2-4, where graphs of the dimensionless temperature distribution 

T'  = (T - To)/T o are presented. Figure 2 corresponds to the first variant of  the geometric parameters with a = 3R 1. Here, 

the temperature distribution is shown at points on the lower boundary of  the layer, through which the external flux Q 

enters, as a function of the displacement angle of the rows of fiber. From these graphs follows the result that the maxi- 

mum value of the temperature depends on the angle ~o ~ In addition, the lowest temperature level occurs for the layer with 

~0 ~ = 0.Dr (the fibers in the rows are above one another), while the highest level occurs when the fibers in the rows are 
shifted by the half-period a/2. The curves in Fig. 3 correspond to a temperature distribution over the layer thickness in its 
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Fig. 4. Temperature distribution at the lower 
layer boundary with constant concentration: 
1) R J R  1 = 0.5; 2) 1.0; 3) 2.0. 

transverse sections x = 0, x = 0.4a, and x = 0.5a with a = 2.4R 1 and ~o ~ = 0.5 rr (the remaining parameters are the same as 

in Fig. 2). Here, y '  = y + h a + h 3 �9 The data in the graphs indicate the very nonmonotonic change in temperature over the 

thickness of  the layer (compared to a uniform layer). The curve x = 0 has characteristic local maxima at points corresponding 
to the centers of the fiber cross sections. 

The values of the temperature at points on the lower boundary of the layer are shown in Fig. 4 for two variants of 
the geometric parameters of  the problem as a function of  the ratio of  the fiber radii in the first and second rows with 
constant fiber concentration in the layer equal to 0.63. It is characteristic that the minimum temperature level is observed 
in the case when the fibers in both rows have the same radius. From Figs. 4 and 2 we arrive at the conclusion that the 
average temperature at the layer boundary,  through which external heat flow is introduced, depends considerably on the 
geometrical parameters of  the composite layer examined. This result is of  definite practical significance in problems of  heat 
removal from composite materials. 

4. If we use the rigorous solution o f  the problem of heat  flow through a fibrous layer presented above, then we can 
examine the problem of  transforming the given inhomogeneous layer to some fictitious, homogeneous, thermophysically 
equivalent layer. In order to obtain an effective coefficient of  heat conduction, it is sufficient to establish, based on a 
rigorous solution, a relation between the average (within period a) values of the component of the heat flux qy parallel to 

the Oy axis and the derivative (O/~y)T. 

Let us represent the average values ( ~ / ~ ) T  and qy in the form 

/ , _ _ ~ 0  
T >  ah = dxdy @ - dxdu q- - dxdy; 

\ Oy --  . Oy , Oy , Oy 
e.,, e, e, (9) 

- -  < q~ > a h =  Xo Og Og " OU 
F~I Ft F~ 

FM + f l + F.~ = ah, F1 = ~R~, F2 = ~R~ �9 

Applying Green's equation, using (2) for the temperature in the layer and (5) for the temperature in the fiber, as well as 
the condit ion for the temperatures to be equal at the boundary between the layer and fiber, after some transformations, 
we obtain: 

O 
< @ -  T >  ah = Bah - -  2~i (A] ~' -~1) -1- A] 2) - -  ~2)); 

(10) 

- -  ~ qu > ah = )voBah. 

Defining the effective coefficient of  thermal conductivity as the ratio of  - ( qy > and <(a/0y)T >, we have from (10) 

1 
Eeff= '~-o - ( 1 1 ) 

1 - -  4 a  i m ( A ~ , ) _ t _  A]2) ) 
ah 

(~) In (1 1), A(11), A are the first unknowns of  the infinite system (8) with q = 1. 

'Fable 1 presents the values of  Xeff/X 0 for the two variants of the geometrical parameters of the layer described above. 

It follows from the table that  the value of  the effective coefficient of  thermal conductivity of  the layer is determined both 
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TABLE 1. Effective Coefficients of Thermal Conductivity for a Layer 
with Two Rows of Fibers 

c 0 ,43  0,63 

q)0 

R:/RI 
)~effL0 

0,3! 
1,0 
2,179 

0,35 
1,0 
2,181 

0,45 
1,0 
2,265 

0.5 
liO 
2,284 

0,3 
2,0 
2,524 

0,3 
1,0 
3.390 

0,3 
0,5 
3,079 

by the concentration of fibers in the layer and their thermal conductivity and by the geometrical parameters of the layer. 
Figure 3 shows the temperature distribution over the thickness of a fictitious homogeneous layer with ;t o = ;teff (dashed 

line). As can be seen from the figure, the solution of the problem for such a layer gives a satisfactory approximation for 
the average values of the temperature at the layer boundaries and can be used in approximate calculations. At the same 
time, we note that the difference between the approximate and exact solutions at interior points of the layer (especially 
in fibers) is very large. 

It is interesting to compare the effective coefficients of thermal conductivity of the fibrous layer presented in the 
table and the analogous coefficients for a composite medium reinforced with fibers [2, 3]. The effective coefficients of 
thermal conductivity calculated from the results in [2] for a composite medium with tetragonal and hexagonal packing of 

fibers are ~ef~0=2,12(c=0.43, q0 =---~-), }eff/L0=2.10(c=0.43, cp~  Xeff/~0= 3.18 ( c =  0,63, @ ~ - - ~ ) .  The 

given values are close to those presented in Table 1 with R2/R 1 = 1, r = Ir/2, ands0 ~ = 0.3 rr. The reduction problem was 

solved in [3] for a composite material with random positioning of unidirectional fibers. Since the results of this paper are 

presented in graphic form, quantitative comparison is difficult. We shall only indicate the fact that the values of Xeff/X o 

with c = 0.43 show a greater difference (the disagreement is about 10%) than for c = 0.63 (the disagreement is about 4%). 

In conclusion, we note the following. The three-dimensional heat-conduction problem for a thin plate, reinforced 
with cylindrical rods, was reduced in the first approximation to a two-dimensional problem in [4] using an asymptotic 
integration method. The corresponding heat-conduction equation contains the parameter B (;tl '  ;t2' F1 ) which is defined in 

terms of the solution of the auxiliary problem of the type examined above. For the latter problem, the flat layer boundaries 
are assumed to be thermally insulated, while the conditions for contact between the layer and the fibers correspond to 
equality of the temperatures and a given jump in the heat fluxes on the contact surface. Thus, the method presented in 
this paper can be used to establish finally the two-dimensional equation of heat conduction in a thin plate with finite 
dimensions in a plane reinforced by one or several rows of cylindrical fibers. 

NOTATION 

h, thickness of the layer; a, distance between neighboring fibers in a row; R i, radius of a fiber in the i-th row; 

xi' Yi' Cartesian coordinates; #i' ~~ polar coordinates in a system of coordinates fixed to the i-th row of the fiber; T, 

temperature in the layer; ti, temperature in a fiber on the i-th row; T O , temperature of the surrounding medium; or, 

coefficient of heat transfer; c, fiber concentration in the layer; ~o ~ relative displacement angle of rows of fibers; Q, heat 

flux; qy, component of the heat flux for the dimensionless problem, parallel to the Oy axis; )t o, coefficient of thermal 

conductivity of the layer material; Xi, coefficient of thermal conductivity of a fiber in the i-th row; ;teff' effective co- 

efficient of thermal conductivity of the fibrous layer. 
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